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Extended floor field CA model for evacuation dynamics
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(Dated: May 23, 2006)

The floor field model, which is a cellular automaton model for studying evacuation dynamics,
is investigated and extended. A method for calculating the static floor field, which describes the
shortest distance to an exit door, in an arbitrary geometry of rooms is presented. The wall potential
and contraction effect at a wide exit are also proposed in order to obtain realistic behavior near
corners and bottlenecks. These extensions are important for evacuation simulations, especially in
the case of panics.

I. INTRODUCTION

Recent progress in modelling pedestrian dynamics [1]
is remarkable and many valuable results are obtained by
using different models, such as the social force model
[2] and the floor field model [3, 4]. The former model
is based on a system of coupled differential equations
which has to be solved e.g. by using a molecular dy-
namics approach similar to the study of granular matter.
Pedestrian interactions are modelled via long-ranged re-
pulsive forces. In the latter model two kinds of floor
fields, i.e., a static and a dynamic one, are introduced
to translate a long-ranged spatial interaction into an at-
tractive local interaction, but with memory, similar to the
phenomenon of chemotaxis in biology [5]. It is interest-
ing that, even though these two models employ different
rules for pedestrian dynamics, they share many proper-
ties including lane formation, oscillations of the direction
at bottlenecks [3], and the so-called faster-is-slower effect
[2]. Although these are important basics for pedestrian
modelling, there are still many things to be done in order
to apply the models to more practical situations such as
evacuation from a building with complex geometry.

In this paper, we will propose a method to construct
the static floor field for complex rooms of arbitrary ge-
ometry. The static floor field is an important ingredient
of the model and has to be specified before the simula-
tions. Moreover, the effect of walls and contraction at a
wide exit will be taken into account which enables us to
obtain realistic behavior in evacuation simulations even
for the case of panic situations.

This paper is organized as follows. In Sec. II, we cite
experimental data of evacuations to illustrate the strat-
egy of people in panic situations. Then an extended floor
field model is introduced in Sec. III including a method of
constructing the floor field and wall potentials. In Sec. IV
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results of simulations for various configurations of a room
are investigated and concluding discussions are given in
Sec. V.

II. HUMAN BEHAVIOUR IN PANIC

SITUATIONS

First we discuss the different kinds of human behavior
in panic situations. People in a room try to evacuate in
case of fire with their own strategy. The strategies of the
evacuation are well studied up to now, and we cite an ex-
ample of an experiment of evacuation that was conducted
in a large supermarket in Japan [6]. Fire alarms and
false smoke were set suddenly in the experiment, and af-
ter people had escaped from the building they have been
interviewed about their choice of escape routes etc. Data
from more than 300 people were collected. The following
list shows the statistics of the answers given:

1. I escaped according to the signs and instructions,
and also broadcast or guide by shopgirls (46.7%).

2. I chose the opposite direction to the smoking area
to escape from the fire as soon as possible (26.3%).

3. I used the door because it was the nearest one
(16.7%).

4. I just followed the other persons (3.0%).

5. I avoided the direction where many other persons
go (3.0%).

6. There was a big window near the door and you
could see outside. It was the most “bright” door,
so I used it (2.3%).

7. I chose the door which I’m used to (1.7%).

We see that very different, sometimes even contradictory,
choices were made indicating the complexity of an evac-
uation problem. If we assume that there are no signs
and no guidance by broadcasts as well as no informa-
tion about the location of the fire, then according to the
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FIG. 1: Target cells for a person at the next time step. The
von Neumann neighborhood is used for this model.

questionnaires, people will try to evacuate by relying on
both one’s memory of the route to the nearest door and
other people’s behavior. This competition between col-
lective and individual behavior is essential for modelling
evacuation phenomena. It is included in the static and

dynamic floor fields of our model that we have introduced
in previous papers [3, 4, 7].

III. AN EXTENDED FLOOR FIELD MODEL

In this section we will summarize the update rules of
an extended floor field model for modelling panic behav-
ior of people evacuating from a room. The space is dis-
cretized into cells of size 40 cm × 40 cm which can ei-
ther be empty or occupied by one pedestrian (hard-core-
exclusion). Each pedestrian can move to one of the un-
occupied next-neighbor cells (i, j) (or stay at the present
cell) at each discrete time step t → t + 1 according to
certain transition probabilities pij (Fig. 1) as explained
below in Sec. III A.

For the case of evacuation processes, the static floor

field S describes the shortest distance to an exit door.
The field strength Sij is set inversely proportional to
the distance from the door. The dynamic floor field D
is a virtual trace left by the pedestrians similar to the
pheromone in chemotaxis [5]. It has its own dynamics,
namely diffusion and decay, which leads to broadening,
dilution and finally vanishing of the trace. At t = 0 for
all sites (i, j) of the lattice the dynamic field is zero, i.e.,
Dij = 0. Whenever a particle jumps from site (i, j) to
one of the neighboring cells, D at the origin cell is in-
creased by one.

The model is able to reproduce various fundamental
phenomena, such as lane formation in a corridor, herd-
ing and oscillation at a bottleneck [3, 4]. This is an in-
dispensable property for any reliable model of pedestrian
dynamics, especially for discussing safety issues.

A. Basic update rules

The update rules of our CA have the following struc-
ture:

1. The dynamic floor field D is modified according

to its diffusion and decay rules, controlled by the
parameters α and δ. In each time step of the simu-
lation each single boson of the whole dynamic field
D decays with probability δ and diffuses with prob-
ability α to one of its neighboring cells.

2. For each pedestrian, the transition probabilities pij

for a move to an unoccupied neighbor cell (i, j) are
determined by the two floor fields and one’s inertia
(Fig. 1). The values of the fields D (dynamic) and
S (static) are weighted with two sensitivity param-
eters kD and kS :

pij = N exp (kDDij) exp (kSSij)pI(i, j)pW , (1)

with the normalization N . Here pI represents the
inertia effect [3] given by pI(i, j) = exp (kI) for the
direction of one’s motion in the previous time step,
and pI(i, j) = 1 for other cells, where kI is the sen-
sitivity parameter. pW , newly introduced in this
paper, is the wall potential which is explained be-
low. In (1) we do not take into account the obstacle
cells (walls etc.) as well as occupied cells.

3. Each pedestrian chooses randomly a target cell
based on the transition probabilities pij determined
by (1).

4. Whenever two or more pedestrians attempt to
move to the same target cell, the movement of
all involved particles is denied with probability
µ ∈ [0, 1], i.e. all pedestrians remain at their site
[7]. This means that with probability 1 − µ one of
the individuals moves to the desired cell. Which
one is allowed to move is decided using a proba-
bilistic method [3, 7].

5. The pedestrians who are allowed to move perform
their motion to the target cell chosen in step 3. D
at the origin cell (i, j) of each moving particle is
increased by one: Dij → Dij + 1, i.e. D can take
any non-negative integer value.

The above rules are applied to all pedestrians at the same
time (parallel update). Some important details are ex-
plained in the following subsections.

B. Effect of walls

People tend to avoid walking close to walls and ob-
stacles. This can be taken into account by using “wall
potentials”. We introduce a repulsive potential inversely
proportional to the distance from the walls. The effect
of the static floor field is then modified by a factor (see
eq. (1)):

pW = exp(kW min(Dmax, d)), (2)

where d is the minimum distance from all the walls, and
kW is a sensitivity parameter. The range of the wall effect
is restricted up to the distance Dmax from the walls.
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(a) (b)

FIG. 2: Snapshot of evacuation (a) without (kW = 0) and
(b) with (kW = 0.5) wall potential. We can clearly see the
artifact of jamming at every corner without the wall potential.
Parameters are Dmax = 10, kS = 2.0, kD = 1.0, kI = 0.2, µ =
0.2 and the initial density is ρ = 0.03.

Fig. 2 shows an example for an evacuation from a room
with obstacles using the wall potential. Without wall po-
tentials (kW = 0), jamming areas near every corner can
be observed, because everybody tries to evacuate along
the same path of minimum length. For kW 6= 0 these ar-
eas are clearly suppressed. Thus the introduction of this
additional potential improves the realism of the model.

C. Calculation of the static field in arbitrary

geometries

In the following we propose a combination of the vis-
ibility graph and Dijkstra’s algorithm to calculate the
static floor field. These methods enable us to determine
the minimum Euclidian (L2) distance of any cell to a
door with arbitrary obstacles between them.

Let us explain the main idea of this method by using
the configuration given in Fig. 3(a) where there is an ob-
stacle in the middle of the room. We will calculate the
minimum distance between a cell P and the door O by
avoiding the obstacle. If the line PO does not cross the
obstacle A − H , then the length of the line, of course,
gives the minimum. If, however, as in the example given
in Fig. 3(a), the line PO crosses the obstacle, one has
to make a detour around it. Then we obtain two can-
didates for the minimum distance, i.e., lines PBAO and
PCDHO. The shorter one finally gives the minimum
distance between P and O. If there are more than one
obstacle in the room, then we apply the same procedure
to each of them repeatedly. Here it is important to note
that all the lines pass only the obstacle’s edges with an
acute angle. It is apparent that the obtuse edges like E
and F can never be passed by the minimum lines.

To incorporate this idea into the computer program,
we first need the concept of the visibility graph in which
only the nodes that are visible to each other are bonded
[11] (“visible” means here that there are no obstacles
between them). The set of nodes consists of a cell point
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FIG. 3: Example for the calculation of the static floor field
using the Dijkstra method. (a) A room with one obstacle.
The door is at O and the obstacle is represented by lines
A − H . (b) The visibility graph for this room. Each node
connected by a bond is “visible”, i.e., there are no obstacles
between them. The real number on each bond represents the
distance between them as an illustration.

P , a door O and all the acute edges in the room. In the
case of Fig. 3(a), the node set is {P, O, A, B, C, D, G, H}
and the bonds are connected between A−B, A−H , and
so on (Fig. 3(b)). Each bond has its own weight which
corresponds to the Euclidian distance between them.

Once we have the visibility graph, we can calculate
the distance between P and O by tracing and adding the
weight of the bonds between them. There are several
possible paths between P and O, and the one with min-
imum total weight represents the shortest route between
them. The optimization task is easily performed by using
the Dijkstra method [11] which enables us to obtain the
minimum path on a weighted graph.

Performing this procedure for each cell in the room,
the method allows us to determine the static floor field
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FIG. 4: A contour plot of the static floor field by using the
Dijkstra metric. There are four obstacles and two doors in
this room. The darkness of shading is inversely proportional
to the distance from the nearest door.

for arbitrary geometries. We will call this metric Dijkstra

metric in the following. Results for a complex static floor
field obtained by this method are shown in Fig. 4. There
are two doors in this room, thus we calculate the mini-
mum distance for each door from each cell in the room
and take the shorter one as value of the static floor field.

Next, we like to point out the advantages of the Dijk-
stra metric compared to the simpler Manhattan metric
[4]. Fig. 5 shows a comparison of typical configurations
during an evacuation from a simple room with no ob-
stacles by using both the Dijkstra and the Manhattan
metric. We see that for large kS the pedestrians move
preferably along a line in front of the door if the Man-
hattan metric is used, whereas for the Dijkstra metric
the behavior is more realistic.

D. Diffusion and decay of the dynamical floor field

We can show that the order of diffusion and decay
process in rule 1 (see Sec. III A) is exchangeable, i.e., it
makes no difference no matter which of the two processes
is applied first. Both diffusion process and decay can be
written in difference form as

Dt+1

ij = Dt
ij − αDt

ij

+
α

4
(Dt

i+1,j + Dt
i−1,j + Dt

i,j+1 + Dt
i,j−1), (3)

Dt+1

ij = Dt
ij − δDt

ij , (4)

respectively. Thus the combination of the diffusion and
decay above gives

Dt+1

ij = (1 − α)(1 − δ)Dt
ij +

α(1 − δ)

4
(Dt

i+1,j

0 20 40 60 80 100
0

20

40

60

80

100

(a) (b)

0 20 40 60 80 100
0

20

40

60

80

100

(c) (d)

FIG. 5: Comparison of typical snapshots in the case of the
Manhattan (a) and Dijkstra (c) metric for the static floor field.
We see an artifact of line formation in front of the door in (a).
This comes from the nonisotropic nature of the Manhattan
metric as seen in the contour plot (b), while the Dijkstra
metric gives an isotropic static floor field from the door (d).
Parameters are kS = 3.0, kD = 1.0, kI = 0.2, µ = 0.2 and the
initial density is ρ = 0.04.

+ +Dt
i−1,j + Dt

i,j+1 + Dt
i,j−1) (5)

regardless of their order.
In [3] also a continuous dynamic floor field has been

investigated. It was observed that this has no qualitative
influence on the behavior of the model. This comes from
the fact that the continuum limit of (5) is the same as
the continuous version in [3]. The limit of (5) is given by

∂D

∂t
= −d1D +

αd2

4

(

∂2D

∂x2
+

∂2D

∂y2

)

, (6)

where δ/∆t = d1 and (∆x)2/∆t = (∆y)2/∆t = d2 (time
and space intervals are written as ∆t and ∆x, ∆y), re-
spectively, and d1, d2 and α are kept constant in the limit
∆x, ∆y, ∆t, δ → 0. Therefore the dynamics of D given
by (6) coincides with the previous one if we choose ap-
propriate coefficients.

E. Model parameters and their physical relevance

There are several parameters in our model, and the
most important ones are listed below with their physical
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meaning which is helpful in understanding the collective
behavior in the simulations.

1. kS ∈ [0,∞[· · · The coupling to the static field char-
acterizes the knowledge of the shortest path to the
doors, or the tendency to minimize the costs due to
deviation from a planned route [8]. This consider-
ably controls one’s velocity and evacuation times.

2. kD ∈ [0,∞[· · · The coupling to the dynamic field
characterizes the tendency to follow other people
(herding behavior). The ratio kD/kS may be in-
terpreted as the degree of panic. It is known that
people try to follow others particulary in panic situ-
ations [2] (see Sec. II). This tendency lasts at least
until they can escape without any hindrance. If
hindrance by other people takes place often and a
tendency to clogging emerges, people try to avoid
such directions. This is taken into account in our
dynamic floor field which is proportional to the
velocity density, such that people will follow only
moving persons.

3. kI ∈ [0,∞[· · · This parameter determines the
strength of inertia which suppresses quick changes
of the direction of motion. It also reflects the ten-
dency to minimize the costs due to deviation from
one’s desired route and acceleration [8].

4. µ ∈ [0, 1] · · · The friction parameter controls the
resolution of conflicts in clogging situations. Both
cooperative and competitive behavior at a bottle-
neck are well described by adjusting µ [10].

5. α, δ ∈ [0, 1] · · · These constants control diffusion
and decay of the dynamic floor field. It reflects
the randomness of people’s movement and the vis-
ible range of a person, respectively. If the room is
full of smoke, then δ takes large value due to the
reduced visibility. Through diffusion and decay the
trace is broadened, dilute and vanishes after some
time.

6. kW , Dmax · · · These parameters specify the wall po-
tential. Pedestrians tend to avoid walking close to
walls and obstacles. Dmax is the maximum distance
at which people feel the walls. It reflects one’s range
of sight or so-called personal space [13]. kW is the
sensitivity to the walls, and the ratio kW /kS re-
flects to which degree deviations from the shortest
route (which is determined by the static floor field)
are accepted to avoid the walls.

IV. SIMULATIONS

We focus on measuring the total evacuation time by
changing the parameters kS , kD, kI , µ and the configu-
ration of the room, such as width, position and num-
ber of doors and obstacles. In all simulations we put
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FIG. 6: Total evacuation time versus coupling kD to the dy-
namic floor field in the dependence of kI . The room is a simple
square without obstacles and 50 simulations are averaged for
each data point. Parameters are ρ = 0.03, kS = 2, kW = 0.3
and µ = 0.

Dmax = 10, α = 0.2 and δ = 0.2, and von Neumann
neighborhoods are used in eq. (1) for simplicity. The size
of the room is set to 100 × 100 cells.

In the previous papers [3, 4, 7], the influence of the two
floor fields on the total evacuation time has been studied
in detail. Here, the effects of inertia and wall potentials
are investigated for concave rooms with some obstacles
by using the Dijkstra metric.

A. Inertia effect

Pedestrians try to keep their preferred velocity and di-
rection as long as possible. This is taken into account
by adjusting the parameter kI . In Fig. 6, total evacua-
tion times from a room without any obstacles are shown
as function of kD in the cases kI = 0 and kI = 3.
We see that it is monotonously increasing in the case
kI = 0, because any perturbation from other people be-
comes large if kD increases, which causes the deviation
from the minimum route. Introduction of inertia effects,
however, changes this property qualitatively as seen in
Fig. 6. The minimum time appears around kD = 1 in
the case kI = 3. This is well explained by taking into ac-
count the physical meanings of kI and kD. If kI becomes
large, people become less flexible and all of them try to
keep their own minimum route to the exit according to
the static floor field regardless of congestion. By increas-
ing kD, one begins to feel the disturbance from other
people through the dynamic floor field. This perturba-
tion makes one flexible and hence contributes to avoid
congestion. Large kD again works as strong perturba-
tion as in the case of kI = 0, which diverts people from
the shortest route largely. Thus we have the minimum
time at a certain magnitude of kD, which will depend on
the value of kS and kI .
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(a) (b)

FIG. 7: Contraction of flow through a wide exit. The width of
the exit is set as 20 cells. In (a) we set the ratio of contraction
as 1, while in (b) it is 0.3. In (a) we see the artifact of the
crowd at both ends of the exit even if they can easily evacuate
through the center of the exit. Parameters are ρ = 0.05, kI =
1.0, kS = 2.0, kD = 1.0, kW = 0.3 and µ = 0.2.

B. Contraction at a wide exit

If the width of an exit becomes large, a more careful
treatment is needed in the calculation of the static floor
field. People tend to rush to the center of the exit to
avoid the walls. Thus one should introduce an effective
width of the exit by neglecting certain cells from its each
end. We call this effect contraction in this paper, due
to its similarity with the contraction effect in hydrody-
namics where fluid runs through a orifice with a smaller
diameter than that of the orifice immediately after the
fluid goes out of it [12]. The shortest distance from a
cell in the room to one of the exit cells is calculated by
using the Dijkstra metric, but only those exit cells near
the center of the door are taken into account owing to the
contraction. Then we take the minimum of those short-
est distances and use it as the value of the static floor
field at the cell. Here we define the ratio of contraction
of an exit as c = W ′/W , where W is the true width of
the exit and W ′ is the effective width. If c = 1, i.e.,
there is no contraction, and we see the artifact of two
crowds near the edges of the exit (Fig. 7(a)). Introduc-
ing the contraction makes the evacuation behavior more
realistic (Fig. 7(b)).

C. Effect of obstacles

Let us investigate the effect of the position of obsta-
cles to the total evacuation time. In Fig. 8, we set up two
rooms such that the total area of obstacles in both rooms
is the same. However, it is important to notice that the
maximum length to the exit is different for these rooms.
The maximum length in room (b) is 124.6, which is longer
than that in (a) (115.5). This difference affects the static
floor field and hence the dynamics of people. The aver-
age total evacuation time in case (a) is given by 357.48
time steps, while in (b) it is 379.22 time steps. This im-
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FIG. 8: The static floor field of rooms with same obstacles
arranged in a different way. Although the total area of obsta-
cles is the same, the maximum length to the exit in the room
(a) is 115.5, while 124.6 in (b). Simulations are done with
parameters kS = 2.0, kD = 1.0, kI = 3.0, kW = 0.3, µ = 0.2
and the initial density of the room is ρ = 0.03.

plies that, even though the area of obstacles is the same,
their positions in the room will affect the evacuation dy-
namics considerably through the static floor field. It is
worth mentioning that this simulation is different from
the column problem we have studied previously [7]. The
existence of a small column in front of an exit does not
change the static floor field so much, but works as a sim-
ple obstacle which divides the flow of evacuating people.

D. Influence of exit width and number of doors

Finally we study the effect of the width of an exit as
well as the total number of doors in a room. We compare
a room with an exit of size 10 to one with two exits of
size 5 (Fig. 9). Although the total width of the exits
is the same, the evacuation dynamics is different. The
total evacuation time is 275 time steps in average for the
case of one exit, but 245 for two exits (Fig.9(a)). If the
two doors are set at opposite walls, the evacuation time
is further improved to 220 time steps (Fig.9(b)). This
is similar to the effect studied in Sec. IV C, because the
minimum length in the case of Fig. 9 (b) becomes 68.2
while it is 104.1 in (a).

V. CONCLUDING DISCUSSION

In this paper we have discussed the main properties
of the floor field cellular automaton model for pedestrian
dynamics. A method for the calculation of the static floor
field and the introduction of wall potentials has been pro-
posed. Both extensions improve the realism of evacuation
simulations. Also it is important to take into account
the contraction in the case of wide exits. The existence
of a minimal evacuation time in the case of finite inertia
kI 6= 0 is found, which shows the importance of one’s
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(a) (b)

FIG. 9: A snapshot of an evacuation from a room with two
exits. The total width of the exits is the same as for the
one exit case. Simulations are done with parameters kS =
2.0, kD = 1.0, kI = 1.0, kW = 0.3, µ = 0.2 and ρ = 0.03.

flexibility to respond to the other people’s behavior in
the case of an evacuation. Finally it is shown that the
position of obstacles in a room will affect the evacuation
dynamics through the static floor field. Thus in archi-
tectural planning it is important to consider a suitable
position of obstacles in a room as well as the exits care-
fully.

Acknowledgement

This work was supported in part by the Ryukoku fel-
lowship 2002 (K. Nishinari).

[1] M. Scheckenberg and S.D. Sharma (Eds.), “Pedestrian
and Evacuation Dynamics,” Springer-Verlag, Berlin,
2001.

[2] D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynam-
ical features of escape panic,” Nature, vol.407, pp.487–
490, 2000.

[3] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zit-
tartz, “Simulation of pedestrian dynamics using a two-
dimensional cellular automaton,” Physica A, vol.295,
pp.507–525, 2001.

[4] A. Kirchner and A. Schadschneider, “Simulation of evac-
uation processes using a bionics-inspired cellular automa-
ton model for pedestrian dynamics,” Physica A, vol.312,
pp.260–276, 2002.

[5] for a review, see e.g. E. Ben-Jacob, “From snowflake for-
mation to growth of bacterial colonies II: Cooperative
formation of complex colonial patterns,” Contemp. Phys.
vol.38, pp.205–241 ,1997.

[6] K. Abe, “Human Science of Panic” (in Japanese), Brain
Pub. Co., Tokyo, 1986.

[7] A. Kirchner, K. Nishinari, and A. Schadschneider, “Fric-
tion effects and clogging in a cellular automaton model
for pedestrian dynamics,” Phys. Rev. E (in press) (e-print
cond-mat/0209383).

[8] S. P. Hoogendoorn, “Walker Behavior Modelling by Dif-
ferential Games,” Computational Physics of Transport
and Interface dynamics, Springer, 2003.

[9] D. Helbing, “Traffic and related self-driven many-particle
systems,” Rev. Mod. Phys. vol.73, pp.1067–1141, 2001.
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