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Abstract. In this paper we show an effect that a shape of way con-
tributes to dynamics of one Cellular Automata pedestrian movement
model. The fundamental diagrams for a closed and strait pathes are pre-
sented and discussed.
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1 Intoduction

Here we present some investigation of dynamics of our model. The model is
stochastic discrete CA model and supposes short-term decisions made by the
pedestrians [1]. A possibility to move according the shortest path and the short-
est time strategies are implemented to the model. From the comprehensive theory
of pedestrian dynamics [2] such model may be refereed to tactical level.

It is obvious that a shape of a way influences on dynamics of people flow in
real life. Here we focus on the influence of turns. The fact is that the pedestrian
flow velocity goes down on turns; and model should be able to reproduce it. We
investigated the realization of the same effect in our pedestrian movement model.
The people flows were simulated under approximately constant densities on a
straight path and a closed path. Differences between two cases were investigated
comparing fundamental diagram.

In the next section the model is presented. Section 3 contains description of
the case study and results obtained.

2 Description of the model

2.1 Space and initial conditions

The space (plane) is known and sampled into cells 40cm×40cm which can either
be empty or occupied by one pedestrian (particle) only (index fij = {0, 1}). Cells
may be occupied by walls (index wij = {0, 1}) and other nonmovable obstacles.

The model imports idea of a map (static floor field S) from floor field (FF)
CA model [3] that provides pedestrians with information about ways to exits.



Our field S increases radially from exit cells. It doesn’t evolve with time and
isn’t changed by the presence of the particles.

A target point for each pedestrian is the nearest exit. Each particle can move
to one of four its next-neighbor cells or to stay in present cell (the von Neumann
neighborhood) at each discrete time step t → t + 1; i.e., vmax = 1[step].

A direction of the movement of each particle at each time step is random
and determined in accordance with the distribution of transition probabilities
and transition rules.

2.2 Update rules and transition probability

A scheme typical of the stochastic CA models is used. At the first stage, some
preliminary calculations are made. Then, at each time step the transition prob-
abilities are calculated, and the directions are selected. In the case, when there
are more than one candidate to occupy a cell, a conflict resolution procedure is
applied. Finally, a simultaneous transition of all the particles is made.

In our case, the preliminary step includes the calculation of FF S. Each cell
Si,j stores the information on the shortest discreet distance to the nearest exit.

The probabilities of movement from cell (i, j) to, e.g., up neighbor is4

pi−1,j = N−1
i,j exp

[
kS�Si−1,j − kP Fi−1,j(r∗i−1,j)−

− kW (1 − r∗i−1,j

r
)1̃(�Si−1,j − max�Si,j)

]
(1 − wi−1,j); (1)

where
– Ni,j = p̃i−1,j + p̃i,j+1 + p̃i+1,j + p̃i,j−1;
– �Si−1,j = Si,j −Si−1,j , kS ≥ 0 is the (model) field S sensitive parameter (the
higher kS , the better directed the movement);
– r > 0 is the visibility radius (model parameter) representing the maximum
distance (number of cells) at which the people density and obstacles influence
on the probability in the given direction;
– r�

i−1,j is the distance to the nearest obstacle in the given direction (r�
i−1,j ≤ r);

the people density lies within 0 ≤ Fi−1,j(r∗i−1,j) ≤ 1;
– kP is the (model) people sensitivity parameter which determines the effect of
the people density, the higher parameter kP , the more pronounced the shortest
time strategy;
– kW ≥ kS is the (model) wall sensitivity parameter which determines the effect
of walls and obstacles.

The decisions rules are the following:

1. If Ni,j = 0, motion is forbidden.
2. If Ni,j �= 0, target cell (l,m)∗, (l,m)∗ ∈ I = {(i − 1, j), (i, j + 1), (i +

1, j), (i, j − 1), (i, j)} is chosen randomly using the transition probabilities.
4 Probabilities pi,j+1, pi+1,j , pi,j−1 are calculated similarly. pi,j = 0: the probability of

retaining the current position is not calculated directly. Nevertheless, the decision
rules are organized so that such opportunity could be taken.



3. (a) If Ni,j �= 0 and (1 − f∗
l,m) = 1, then target cell (l,m)∗ is fixed.

(b) If Ni,j �= 0 and (1 − f∗
l,m) = 0, then the cell (l,m)∗ is not available as

it is occupied by a particle. In such case pi,j =
∑

(y,z)∈I:(1−fy,z)=0

py,z and

py,z = 0∀(y, z) ∈ I : (1 − fy,z) = 0. Again, the target cell is chosen
randomly using the transformed probability distribution.

4. Whenever two or more pedestrians have the same target cell, movement of all
the involved pedestrians is denied with probability µ. One of the candidates
moves to the desired cell with the probability 1− µ. The pedestrian allowed
to move is chosen randomly.

5. The pedestrians that are allowed to move perform motion to the target cell.
6. The pedestrians that appear in the exit cells leave the room.

The above rules are applied to all the particles at the same time; i.e., parallel
update is used.

3 Case study

To investigate the contribution of turnes to model dynamics we use two case
studies, see fig. 1. The first path is strait; the other one is closed path. A set
of densities was considered. During each experiment the initial density was kept
approximately constant.

a) Strait path. b) Closed path.

Fig. 1.

In all experiments we investigate the directed movement kS = 4; the attitude
to walls is “loyal” (kW = kS).

The simplest type of the way, the strait path, supposes that strategy of
the shortest path coincides with the shortest time strategy for the whole way.
Geometry of the way does not influence on the movement, and the shape of the
flow and velocity are only determined by the density. To realize only the shortest
path strategy the model density sensitive parameter kP has to be low (kP < kS).



If there are turns on the way, congestions appear before turns (depending on
density), and some people start to use detours facilities (that means to follow
the shortest time strategy) and not to wait when the shortest path will free.
As a result the average velocity and flow go down. In the model the shortest
time strategy is pronounced under kP > kS . The mechanism is the following.
If the shortest path direction has a high density, F (r�) ≈ 1, the probability
of this direction goes down. At the same time, the probability of direction(s)
that are more favorable to movement (F (r�) 	 1) rises, and the detours around
high-density regions are made. One can say that the model is density adjustable.
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a) Strait path.
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b) Closed path.

Fig. 2. Fundamental diagram for different sets of parameters kS , kP , r (J kS kP r).



In figures 2a, 2b the fundamental diagrams presented for strait and for closed
pathes correspondingly. Comparing figures one can see that the flow 5 goes down
(approximately in half) from the strait path case to the closed one. Shapes of
the fundamental diagrams change. Maximum of the flow shifts to lower densities.
Thus, general expectations are realized.

We tested different sets of parameters. These sets reproduce the different
people movement: from using only one strategy (the shortest path) when kP < kS

to combining both strategies if kP > kS .

In fig. 2a one can see that the flows are the highest and approximately co-
incide for 3 sets of parameters (kS = 4, kP = 2, r = 1; kS = 4, kP = 4, r = 1;
kS = 4, kP = 4, r = 10). In all of this cases the shortest path strategy is mainly
reproduced by the model; the influence of the people density sensitive term is
reduced to minimum by low parameter kP .

The other curves in fig. 2a give flows for cases when the the shortest time
strategy is already reproduced by the model. But the type of the path does
not suppose using of this strategy. And realizing of the shortest time strategy
delivers some disturbance to the directed movement, average velocity of the flow
slows down, and this results in the lower flow.

Note that for wide range of low densities and for high densities all sets of
model parameters give the same flow. This says that for such type of way the
model is sensitive to model parameters only under middle flow density.

At the same time a comparison of figures 2a and 2b shows that for the closed
path starting with the lowest densities the model is sensitive to the parameters.
Curves in figure 2b diverge for the whole range of densities and approximately
coincide only for extreme density values. But value of maximal divergence is
considerably less then in fig. 2a.

Moreover dynamics of the model, on the whole, is very sensitive to the shape
of way. Only for ρ < 0, 75[1/m2] flows for parameters considered in figure 2a
and figure 2b approximately coincide. Starting with ρ > 0, 75[1/m2] presence
of turns results in a slowing down of the velocities and flows (approximately in
half).

Interesting facts are: the most divergent curves from fig. 2a (J 4 2 1 and
J 4 18 10) approximately coincide in the closed path case; the most coincident
curves from fig. 2a (J 4 2 1 and J 4 4 1) are the most divergent in fig. 2b.

The first fact may be explained in the following way. Parameters kS = 4, kP =
2, r = 1 and kS = 4, kP = 18, r = 10 deliver opposite extreme strategies of move-
ment (see above); and for the straight path this gives expected very divergent
curves. For the closed path these opposite properties gives coincident the lowest
flows because the type of the way implies the combining of the strategies.

5 We use specific flow J = 1000/Tst/2 [1/step/m], where Tst – number of steps that
1000 particles need to cross the control line under given density.



4 Conclusion

At the moment we have no appropriate real data for the similar closed path to
compare with. But simulation results obtained show the expected decreasing of
the flow comparing the straight and the closed pathes. We believe that specific
feature of CA model, i.e., discreteness of the space and the von Neumann neigh-
borhood, gives some contribution to the decreasing. But nevertheless the proper
model “senses” the shape of the way.

At the same time simulation results show that model parameters play impor-
tant role. Of course the fundamental diagram could not depict the all variety of
the difference in model dynamics for different parameters and type of ways, and
more criterions should be investigated for thorough identifying the all features
of the model dynamics. But time and spatial adaptation of model parameters
becomes clear to make the model geometry adjustable.
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